Enviromental Prediction Software

Sound and Vibration

Olive Tree Lab –Terrain, the first product by PEMARD, launched in 2011 and now version 3.0, deals with outdoor sound propagation with surgical accuracy calculations in noise barriers design and assessing noisy outdoor environments. It also includes ISO 9613-2.


Olive Tree Lab – Room, addresses room acoustical design of performing spaces and/or typical rooms and provides ISO 3382 Parts 1 & 2 acoustical parameters by which one can evaluate the acoustical quality of the spaces under study


Olive Tree Lab – Office based on ISO 3382 Part 3, deals with the optimisation of open plan offices in terms of speech privacy and work distraction by activities in neighbouring working stations.

 



Multilayered Structure Builder and Sound Distribution and Scattering Polar Plotter. 
Calculation tools for:
  • Surface impedance of  materials and multilayered structures, based on the Transfer Matrix Method.  
  • Sound distribution and scattering of auditorium sound reflectors and scattering effects from noise barriers.

OTL-3.0 is the first acoustical software application to include a multilayered structure builder based on the Transfer Matrix Method which calculates surface impedance, sound absorption coefficient and sound transmission loss in structures or materials. It is the first ever acoustics software to apply spherical wave propagation over impedance surfaces. This approach enables the calculation of non-common acoustical phenomena such as surface waves and ground waves.  Such waves have great impact on the simulation of outdoor sound propagation but also room acoustics, especially at grazing incidence.
With the coming next year of Olive Tree Lab – Building, the software applications for the calculation of building acoustics, sound transmission and radiation in buildings and structures, the OTL-Suite will provide a complete unique approach in solving most of  the problems encountered by professionals in their work.

Olive Tree Lab Terrain is a noise prediction software which simulates and predicts Outdoor Sound Propagation and Noise Barrier efficiency, taking into account geometrical spreading, atmospheric absorption, atmospheric turbulence, spherical wave complex ground impedance, reflection and diffraction effects of natural or man-made objects. The results are displayed as level vs frequency or level vs spatial mapping.

Based on state of the art calculation methods and ray detection techniques, which demand computational power and time, Olive Tree Lab Terrain is aimed at small scale projects as opposed to large noise mapping software. It addresses mostly fixed noise sources within a small area where one has control over most of the acoustic parameters involved in the sound calculations. It is based on high frequency resolution calculations, as opposed to just 1/3 octave band analysis, which can also be seen in 1/3 and 1/1 octave bands after being appropriately averaged.

OTL Terrain can be used for acoustics engineering, acoustics research and educational purposes. Olive Tree Lab Terrain can assist in designing acoustic solutions based on certain noise criteria in real time response, based on preliminary calculations during the design time.

Calculations

OTL Terrain is a calculations application based on the following methods and their limitations (Reference List):

  • Hadden & Pierce Diffraction 3D model implemented with finite impedances faces using Salomons semi-analytical method including ground effects. Multiple barrier diffraction is calculated in a recursive way at any diffraction order. 
  • In-house sound path detection methods.
  • Ground effect using the One Parameter Theory of Chessell based on Delany and Bazley

  • Reflections from finite surfaces based on Clay–Medwin’s work to include Fresnel zones contribution at any order level. 
  • Atmospheric absorption based on ISO 9613 -1. 
  • Turbulence coherence factor based on HARMONOISE WP3 

In this version no atmospheric refraction calculations are included.

Version 2.0 includes ISO 9613-2 calculation methods and Interior noise.

Terrain Bibliography

Papers

1.              D. Pierce: Diffraction of sound around corners and over wide barriers. J. Acoust. Soc. Am. 55 (1974) 941-955.

2.              D. Pierce: Acoustics. American Institute of Physics, New York, 1981.

3.              J. W. Hadden, A. D. Pierce: Sound diffraction around screens and wedges for arbitrary point source locations. J. Acoust. Soc.Am. 69 (1981) 1266-1276. Erratum (1982), J. Acoust. Soc.Am. 71, 1290.

4.              Chu, T. K. Stanton, and A. D. Pierce, “Higher-order acoustic diffraction by edges of finite thickness,” J. Acoust. Soc. Am. 122, 3177–3193 (2007).

5.              Salomons EM. Sound propagation in complex outdoor situations with a non-refracting atmosphere: Model based on analytical solutions for diffraction and reflection. Acustica — Acta Acustica 1997;83:436–54.

6.              T. Isei, T. F. W. Embleton, J. E. Piercy: Noise reduction by barriers on finite impedance ground. J. Acoust. Soc. Am. 67 (1980) 46-58.

7.              S. Kim, J. S. Kim, H. J. Kang, B. K. Kim, and S. R. Kim, “Sound diffraction by multiple wedges and thin screens,” Appl. Acoust. 66, 1102–1119 (2005).

8.              Min H, Qiu X: Multiple acoustic diffraction around rigid parallel wide barriers. J Acoust Soc Am; 2009 Jul;126(1):179-86.

9.              C.I. Chessell: Propagation of noise along a finite impedance boundary, J. Acoust. Soc. Am. 62, 825-834 (1977).

10.          E. Delany, E. N. Bazley: Acoustical properties of fibrous absorbent materials. Appl. Acoustics 3 (1970) 105-116.

11.          T. F. W.Embleton, J. E. Piercy, and G. A. Daigle, ‘‘Effective flow resistively of ground surfaces determined by acoustical measurements,’’ J.Acoust. Soc. Am. 74, 1239–1244 ~1983.

12.          Rindel, J. H., Acoustic design of reflectors in auditoria. Proc. IOA (UK), 14(2) (1992) 119-28.

13.          ISO 9613-1: 1993(E): Acoustics – attenuation of sound during propagation outdoors – Part I: Calculation of the absorption of sound by the atmosphere. International Standards Organisation,1993.

14.          Nota et al., Engineering method for road traffic and railway noise after validation and fine tuning, EU-FP5 project “HARMONOISE” deliverable report n°D18 (HAR32TR-040922-DGMR20), DGMR, 2005.

15.          B. Plovsing, J. Kragh, Nord2000. Comprehensive Outdoor Sound Propagation Model. Part 1:Propagation in an Atmosphere without Significant Refraction, Report for the Nordic Group AV 1849/00, Delta, 2001.

16.          B. A. De Jong, A. Moerkerken & J. D. Van Der Toorn, 1983 Journal of Sound and Vibration,  86(l), 23-46, ‘Propagation of Sound over Grassland and over an Earth Barrier’

17.          Robert P. Kendig & Sabih I Hayek, 1981 Journal of the Acoustical Society of America, 70(4), 1156-1165, ‘Diffraction by a hard-soft barrier’

18.          H. Medwin, 1981 Journal of the Acoustical Society of America, 69(4), 1060-1064, ‘Shadowing by finite noise barriers’

19.          Mutsushige Yuzawa & Toshio Sone, 1981 Applied Acoustics, 14, 65-73, ‘Noise Reduction by various shapes of barrier’

20.          T. Kawai, 1981 Journal of Sound and Vibration, 79(2), 229-242, ‘Sound Diffraction by a Many-Sided Barrier or Pillar’

21.          Ronald L. Dicus, 1982 Journal of the Acoustical Society of America, 72(2), 494-504, ‘Boundary reflection/diffraction effects and the parabolic-equation split-step algorithm’

22.          G. A. Daigle, 1982 Journal of the Acoustical Society of America, 71(4), 847-854, ‘Diffraction of Sound by a Noise Barrier in the presence of Atmospheric Turbulence’

23.          T. Kawai, T. Hidaka & T. Nakajima, 1982 Journal of Sound and Vibration, 83(1), 125-138, ‘Sound Propagation above an Impedance Boundary’

24.          K. J. Marsh, 1982 Applied Acoustics, 15, 411-428, ‘The Concave Model for Calculating the Propagation of Noise from Open-Air Industrial Plants’

25.          Herman Medwin, Emily Childs & Gary M. Jebsen, 1982 Journal of the Acoustical Society of America, 72(3), 1005-1013, ‘Impulse studies of Double Diffraction: A discrete Huygens Interpretation’

26.          J. Nicolas, T. F.W. Embleton & J. E. Piercy, 1983 Journal of the Acoustical Society of America, 74(4), 1300-1301, ‘Authors’ reply to “Comments on ‘Precise model measurements versus theoretical prediction of barrier insertion loss in presence of the ground”‘

27.          T. F. W. Embleton J. E. Piercy, & G.A. Daigle, 1983 Journal of the Acoustical Society of America, 74(4), 1239-1244, ‘Effective flow resistivity of ground surfaces determined by acoustical measurements’

28.          G.A. Daigle, J. E. Piercy, & T.F.W. Embleton, 1983 Journal of the Acoustical Society of America, 74(5), 1505-1513, ‘Line-of-sight Propagation through Atmospheric Turbulence near the ground’

29.          Steven F. Clifford & Richard J. Lataitis, 1983 Journal of the Acoustical Society of America, 73(5), 1545-1550, ‘Turbulence effects on acoustic wave propagation over a smooth surface’

30.          Rufin Makarewicz, 1983 Journal of the Acoustical Society of America, 74(2), 543-558, ‘Theoretical foundations of urban noise control’

31.          J. Nicolas, T. F.W. Embleton & J. E. Piercy, 1983 Journal of the Acoustical Society of America, 73(1), 44-54, ‘Precise model measurements versus theoretical prediction of barrier insertion loss in presence of the ground’

32.          D.C. Hothersall & S. Simpson, 1983 Journal of Sound and Vibration, 90(3), 399-405, ‘The Reflection of Road Traffic Noise’

33.          Pranab Saha & Allan D. Pierce, 1984 Journal of the Acoustical Society of America, 75(1), 46-49, ‘Geometrical theory of diffraction by an open rectangular box’

34.          D.A. Hutchins, H.W. Jones, & L.T. Russell, 1984 Journal of the Acoustical Society of America, 75(6), 1807-1816, ‘Model studies of barrier performance in the presence of ground surfaces. Part I -Thin, perfectly reflecting barriers’

35.          D.A. Hutchins, H.W. Jones, & L.T. Russell, 1984 Journal of the Acoustical Society of America, 75(6), 1817-1826, ‘Model studies of barrier performance in the presence of ground surfaces. Part II – Different shapes’

36.          Matthew A. Nobile & Sabih I. Hayek, 1985 Journal of the Acoustical Society of America, 78(4), 1325-1326, ‘Acoustic propagation over an impedance plane’

37.          G.A. Daigle, J. Nicolas & J.L. Berry, 1985 Journal of the Acoustical Society of America, 77(1), 127-138, ‘Propagation of noise above ground having an impedance discontinuity’

38.          William Bowlby & Louis F. Cohn, 1986 Journal of the Acoustical Society of America, 80(3), 855-868, ‘A model for insertion loss degradation for parallel highway noise barriers’

39.          G.A. Daigle, T.F.W. Embleton & J. E. Piercy, 1986 Journal of the Acoustical Society of America, 79(3), 613-627, ‘Propagation of sound in the presence of gradients and turbulence near the ground’

40.          M.M. Radwan & D.J. Oldham, 1987 Applied Acoustics, 20, 169-182, ‘The Return Wall as a Traffic Noise Barrier’

41.          Keith Attenborough, 1988 Applied Acoustics, 24, 289-319, ‘Review of Ground Effects on Outdoor Sound Propagation from Continuous Broadband Sources’

42.          S. Liu & C.S.Clay, 1988 Journal of the Acoustical Society of America, 84(6), 2135-2143, ‘Sound transmission experiments from an impulsive source near rigid wedges.’

43.          H.E.Bass, R.Raspet & J.Noble, 1988 Journal of the Acoustical Society of America, 84(6), 2275-2277, ‘Influence of ground reflection on measurements involving bands of noise’

44.          I.Tolstoy, 1989 Journal of the Acoustical Society of America, 85(2), 661-669, ‘Exact explicit solutions for diffraction by hard sound barriers and seamounts.’

45.          D.Chu, 1989 Journal of the Acoustical Society of America, 86(5), 1883-1896, ‘Impulse response of density contrast wedge using normal coordinates’

46.          L’Espérance, 1989 Journal of the Acoustical Society of America, 86(1), 179-183, ‘The insertion loss of finite length barriers on the ground’

47.          H.M. Hess, K. Attenborough & N.W. Heap, 1990 Journal of the Acoustical Society of America, 87, 1975-1986, ‘Ground characterization by short-range propagation measurements’

48.          S.I. Hayek, 1990 Applied Acoustics, 31, 77-100, ‘Mathematical Modeling of Absorbent Highway Noise Barriers’

49.          D. Hohenwarter, 1990 Journal of Sound and Vibration, 141(3), 17-41, ‘Railway Nnoise Propagation Models’

50.          Y. Kawai & T. Terai, 1990 Journal of Sound and Vibration, 141(1), 83-96, ‘A numerical method for the calculation of transient acoustic scattering from thin rigid plates’

51.          R.K. Pirinchieva, 1990 Journal of the Acoustical Society of America, 87(5), 2109-2113, ‘Model study of the sound propagation behind barrier of finite length’

52.          H.E. Bass, L.N. Bolen, R. Raspet, W. McBride & J. Noble, 1991 Journal of the Acoustical Society of America, 90(6), 3307-3313, ‘Acoustic propagation through a turbulent atmosphere: Experimental characterization’

53.          D.C. Hothersall, S.N. Chandler-Wilde & M.N. Hajmirzae, 1991 Journal of Sound and Vibration, 146(2), 303-322, ‘Efficiency of single noise barriers’

54.          R.K. Pirinchieva, 1991 Journal of Sound and Vibration, 148(2), 183-192, ‘The influence of barrier size on its sound diffraction’

55.          J.H. Rindel, 1991 Applied Acoustics, 34, 42917, ‘Design of new ceiling reflectors for improved ensemble in a concert hall.’

56.          R.K. Pirinchieva, 1991 Journal of the Acoustical Society of America, 90(5), 2678-2682, ‘Model study of sound propagation over ground of finite impedance’

57.          Y.M. Lam & C.S. Roberts, 1993 Journal of the Acoustical Society of America, 93(3), 1445-1452, ‘A simple method for accurate prediction of finite barrier insertion loss’

58.          L’Espérance, P. Herzog, G.A. Daigle & J.R. Nicolas, 1992 Applied Acoustics, 37, 111-139, ‘Heuristic model for outdoor sound propagation based on an extension of the geometrical ray theory in the case of a linear sound speed profile’

59.          T. Cox & Y.W. Lam, 1993 Applied Acoustics, 40, 123-140, ‘Evaluation of methods for predicting the scattering from simple rigid panels’

60.          C.S. Clay, D. Chu & S. Li, 1993 Journal of the Acoustical Society of America, 94(4), 2279-2286, ‘Secular reflections of transient pressures from finite width plane facets’

61.          X. Di & K.E. Gilbert, 1993 Journal of the Acoustical Society of America, 93(2), 714-720, ‘An exact Laplace transform formulation for a point source above a ground surface’

62.          W.L. Li, W. Wu & F. Seybert, 1994 Journal of Sound and Vibration, 171(2), 173-187, ‘A half-space boundary element method for acoustic problems with a reflecting plane of arbitrary impedance’

63.          K. Attenborough, 1994 Journal of the Acoustical Society of America, 95, 3103-3108, ‘A note on short-range ground characterization’

64.          E. Salomons, 1994 Journal of the Acoustical Society of America, 95(6), 3109-3117, ‘Diffraction by a screen in downwind sound propagation: A parabolic-equation approach’

65.          E. Salomons, 1994 Journal of the Acoustical Society of America, 95(5), 2425-2437, ‘Downwind propagation of sound in an atmosphere with a realistic sound-speed profile: A semianalytical ray model’

66.          S. Liu, D. Chu & C.S.Clay, 1994 Journal of the Acoustical Society of America, 96(6), 3715-3720, ‘Time domain reflections and diffractions from facet-wedge constructions: Acoustic experiments including double diffractions’

 

67.          Y.W Lam, 1994 Applied Acoustics, 42, 99-123, ‘On the modelling of the effect of ground terrain profile in environmental noise calculations’

68.          Y.W Lam, 1994 Applied Acoustics, 42, 29-40, ‘Using Maekawa’s chart to calculate finite length barrier insertion loss’

69.          D.K. Wilson & D.W. Thomson, 1994 Journal of the Acoustical Society of America, 96(2), 1080-1095, ‘Acoustics propagation through anisotropic, surface -layer turbulence’

70.          K. Attenborough & S. Taherzadeh, H.E. Bass & R.Raspet, G.R. Becker & A. Güdesen, A. Chrestman, G.A> Daigle & A. L’Espérance, Y. Gabillet, K.E. Gilbert, Y.L.Li & M.J. White, P. Naz, J.M. Noble, H.A.J.M van Hoof, 1995 Journal of the Acoustical Society of America, 97(1), 173-191, ‘Benchmark cases for outdoor sound propagation models’

71.          R.Raspet & W.Wu, 1995 Journal of the Acoustical Society of America, 97(1), 147-153, ‘Calculation of average turbulence effects on sound propagation based on the fast field program formulation’

72.          L’Espérance, Y. Gabillet & G.Daigle, 1995 Journal of the Acoustical Society of America, 98(1), 570-579, ‘Outdoor sound propagation in the presence of atmospheric turbulence: Experiments and theoretical analysis with the fast field program algorithm’

73.          D.C. Hothersall & J.N.B Harriott, 1995 Journal of the Acoustical Society of America, 97(2), 918-926, ‘Approximate models for sound propagation above multi-impedance plane boundaries’

74.          P.Chevre, Ph. Blanc-Benon & D. Juvé, 1996 Journal of the Acoustical Society of America, 100(6), 3587-3599, ‘A numerical model for sound propagation through a turbulent atmosphere near the ground’

75.          D. Duhamel, 1996 Journal of Sound and Vibration, 197(5), 547-571, ‘Efficient calculation of the three-dimensional sound pressure field around a noise barrier’

76.          T. W. Embleton, 1996 Journal of the Acoustical Society of America, 100(1), 31-48, ‘Tutorial on sound propagation outdoors’

77.          E. Salomons, 1997 ACTA ACUSTICA, 83, 436-454, ‘Sound propagation in complex outdoor situations with a non-refracting atmosphere: Model based on analytical solutions for diffraction and reflection’

78.          E. Salomons, 1996 Applied Acoustics, 47, 217-238, ‘Noise barriers in a refracting atmosphere’

79.          K. Rasmussen, 1996 Journal of the Acoustical Society of America, 100, 3583-3588, ‘Sound propagation over screened ground under upwind conditions’

80.          P. Boulanger, T Water-Fuller, K. Attenborough & K.M. Li, 1997 Journal of the Acoustical Society of America, 102(3), 1432-1442, ‘Models and measurements of sound propagation from point source over mixed impedance ground’

81.          V.E. Ostashev & V. Mellert, R. Wandelt & F. Gerdes, 1997 Journal of the Acoustical Society of America, 102(5), 2561-2570, ‘Propagation of sound in a turbulent medium. I.Plane waves’

82.          A.M.J.Davis & R.W. Scharstein, 1997 Journal of the Acoustical Society of America, 101(4), 1821-1835, ‘The complete extension of the Biot-Tolstoy solution to the density contrast wedge with sample calculations’

83.          J.Defrance & Y. Gabillet, 1999 Applied Acoustics, 57, 109-127, ‘A new analytical method for the calculation of outdoor noise propagation’

84.          Muradali & K.R Fyfe, 1998 Applied Acoustics, 53, 49-75, ‘A study of 2D and 3D barrier insertion loss using improved diffraction-based methods’

85.          D.I Havelock, M. R. Stinson and G.A. Daigle, 1998 Journal of the Acoustical Society of America, 104(1), 91-99, ‘Measurements of the two-frequency mutual coherence function for sound propagation through a turbulent atmosphere’

86.          K.M. Li, S. Taherzadeh & K. Attenborough, 1998 Journal of the Acoustical Society of America, 104(4), 2077-2083, ‘An improved ray-tracing algorithm for predicting sound propagation outdoors’

87.          V.E. Ostashev , B. Brähler & V. Mellert, & G.H. Goedecke, 1998 Journal of the Acoustical Society of America, 104(2), 727-737, ‘Coherence functions of plane and spherical waves in a turbulent medium with the von Karman spectrum of medium inhomogeneities’

88.          E. Salomons, 1999 Journal of the Acoustical Society of America, 106(5), 3036, ‘Erratum: “Caustic diffraction fields in a downward refracting atmosphere” [J. Acoust. Soc. Am. 104, 3259-3272 (1998)]’

89.          E. Salomons, 2000 Journal of the Acoustical Society of America, 108(4), 1582-1588, ‘Fluctuations of spherical waves in a turbulent atmosphere: effect of the axisymmetric approximation in computational methods’

90.          D.Duhamel & P. Sergent, 1998 Journal of Sound and Vibration, 218(5), 799-823, ‘Sound propagation over noise barriers with absorbing ground’

91.          K.B. Rasmussen & M.G. Arranz, 1998 Journal of the Acoustical Society of America, 104(5), 2692-2698, ‘The insertion loss of screens under the influence of wind’

92.          N.J. de Lautour, 1999 Journal of the Acoustical Society of America, 106(6), 3072-3080, ‘A Galerkin method for the numerical analysis of diffraction by a rectangular screen’

93.          Muradali & K.R Fyfe, 1999 Applied Acoustics, 56, 157-182, ‘Accurate Barrier modeling in the presence of atmospheric effects’

94.          J.S. Robertson, 1999 Journal of the Acoustical Society of America, 106(1), 113-119, ‘Sound propagation over a large wedge: A comparison between the geometrical theory of diffraction and the parabolic equation’

95.          E. Salomons, 1999 Journal of the Acoustical Society of America, 105(2), 652-657, ‘A coherent line source in a turbulent atmosphere’

96.          E. Salomons, 1999 Journal of the Acoustical Society of America, 105(4), 2287-2293, ‘Reduction of the performance of a noise screen due to screen-induced wind-speed gradients. Numerical computations and wind-tunnel experiments’

97.          U. P. Svensson & R.I. Fred, J. Vanderkooy, 1999 Journal of the Acoustical Society of America, 106(5), 2331-2344, ‘An analytic secondary source model of edge diffraction impulse responses’

98.          P.Jean, J. Fefrance & Y. Gabillet, 1999 Journal of Sound and Vibration, 226(2), 201-216, ‘The importance of source type on the assessment of noise barriers’

99.          F.P. Mechel, 1999 Journal of Sound and Vibration, 219(1), 105-132, ‘Scattering at rigid building corners’

100.       I.A. Drumm & Y.W. Lam, 2000 Journal of the Acoustical Society of America, 107(3), 1405-1412, ‘The adapative bean-tracing algorithm’

101.       G.J. Wadsworth & J.P. Chambers, 2000 Journal of the Acoustical Society of America, 107(5), 2344-2350, ‘Scale model experiments on the insertion loss of wide and double barriers’

102.       P. Menounou, I.J. Busch-Vishniac & D.T. Blackstock, 2000 Journal of the Acoustical Society of America, 107(6), 2973-2986, ‘Directive line source model: A new model for sound diffraction by half planes and wedges’

103.       E. Salomons & K.B. Rasmussen, 2000 Applied Acoustics, 60, 327-341, ‘Numercial computation of sound propagation over a noise screen based on an analytic approximation of the wind speed field’

104.       P. Menounou, 2001 Journal of the Acoustical Society of America, 110(4), 1828-1838, ‘A correction to Maaekawa’s curve for the insertion loss behind barriers’

105.       B.J. Jin, H.S. Kim, H.J. Kang & J.S. Kim, 2001 Applied Acoustics, 62, 1107-1121, ‘Sound diffraction by a partially inclined noise barrier’

106.       C. Steele, 2001 Applied Acoustics, 62, 271-287, ‘A critical review of some traffic noise prediction models’

107.       E. Salomons, V.E. Ostashev, S.F Clifford & R.J. Lataitis, 2001 Journal of the Acoustical Society of America, 109, 1881-1893, ‘Sound propagation in a turbulent atmosphere near the ground: An approach based on the spectral representation of reflective-index fluctuations’

108.       V.E. Ostashev, E. Salomons, S.F Clifford & R.J. Lataitis, Ph. Blanc-Benon & D. Juvé, 2001 Journal of the Acoustical Society of America, 109(5), 1894-1908, ‘Sound propagation in a turbulent atmosphere near the ground: A parabolic equation approach’

109.       R.R. Torres, U. P. Svensson & M. Kleiner, 2001 Journal of the Acoustical Society of America, 109(2), 600-610, ‘Computation of edge diffraction for more accurate room acoustics auralization’

110.       J. Forssén, 2002 ACTA ACUSTICA, 88, 181-189, ‘Calculation of noise barrier performance using the substitute-sources method for a three-dimensional turbulent atmosphere’

111.       D. Ouis, 2003 Journal of Sound and Vibration, 262, 347-364, ‘Noise attenuation by a hard wedge-shaped barrier’

112.       T.V Renterghem & D. Botteldooren & W.m. Cornelis & D. Gabriels, 2002 ACTA ACUSTICA, 88, 231-238, ‘Reducing screen-induced refraction of noise barriers in wind by vegetative screens’

113.       J. Forssén & M. Ögren, 2002 Applied Acoustics, 63, 173-187, ‘Thick barrier noise-reduction in the presence of atmospheric turbulence: measurements and numerical modelling’

114.       K.M. Li & S.H. Tang, 2003 Journal of the Acoustical Society of America, 114(2), 821-832, ‘The predicted barrier effects in the proximity of tall buildings’

115.       K.M. Li, W.K. Lui, K.K. Lau, K.S. Chan, 2003 Applied Acoustics, 64, 633-653, ‘A simple formula for evaluating the acoustic effect of balconies in protecting dwellings against road traffic noise’

116.       J. Defrance & P. Jean, 2003 Applied Acoustics, 64, 765-780, ‘Integration of the efficiency of noise barrier caps in a 3D ray tracing method. Case of a T-shaped diffracting device’

117.       T. Ishizuka & K. Fujiwara, 2004 Applied Acoustics, 65, 125-141, ‘Performance of noise barriers with various edge shapes and acoustical conditions’

118.       T. Busch & M.Hodgson, 2003 Journal of the Acoustical Society of America, 114(4), 1947-1954, ‘Scale-model study of the effectiveness of highway noise barriers’

119.       D. Heimann & R. Blumrich, 2004 Applied Acoustics, 65, 561-582, ‘Time-domain simulations of sound propagation through screen-induced turbulence’

120.       Tunick, 2003 Journal of the Acoustical Society of America, 114(4), 1796-1806, ‘Calculating the micrometeorological influences on the speed of sound through the atmosphere in forests’

121.       M. Ögren & J. Forssén, 2004 Applied Acoustics, 65, 629-642, ‘Modelling of a city canyon problem in a turbulent atmosphere using an equivalent sources approach’

122.       D.S. Cho, J.H. Kim, T.M. Choi, B.H. Kim, D.Manvell, 2004 Applied Acoustics, 65, 883-892, ‘Highway traffic noise prediction using method fully complaint with ISO 9613: comparison with measurements’

123.       M.R. Monazzam, Y.W. Lam, 2005 Applied Acoustics, 66, 709-730, ‘Performance of profiles single noise barriers covered with quadratic residue diffusers’

124.       Y.W. Lam, 2004 Applied Acoustics, 65, 583-603, ‘A boundary element method for the calculation of noise barrier insertion loss in the presence of atmospheric turbulence’

125.       P. Menounou & J.H. You, 2004 Journal of the Acoustical Society of America, 116(5), 2843-2854, ‘Experimental study of the diffracted sound field around jagged edge noise barriers’

126.       T.K. Stanton & D. Chu, 2004 Journal of the Acoustical Society of America, 116(1), 239-244, ‘On the acoustic diffraction by the edges of benthic shells’

127.       D.K. Wilson & V.E. Ostashev, G.H. Goedecke, H.J. Auvermann, 2004 Applied Acoustics, 65, 605-627, ‘Quasi-wavelet calculations of sound scattering behind barrier’

128.       C. Feuillade, D. Chu, C.S. Clay, 2004 Journal of the Acoustical Society of America, 116(2), 777-789, ‘Space-time variations of the acoustic field scattered from a penetrable isovelocity wedge’.

129.       K.M. Li & H.Y Wong, 2005 Applied Acoustics, 66, 45-76, ‘A review of commonly used analytical and empirical formulae for predicting sounddiffracted by a thin screen.’

130.       M.R. Ismail & D.J. Oldham, 2005 Applied Acoustics, 66, 123-147, ‘A scale model investigation of sound reflection from building façades.’

131.       P. De Vos, M. Beuving & E. Verheijen, 2005 HARMONOISE, , , ‘Harmonised Accurate and Reliable Methods for the EU Directive on the Assessment and Management of Environmental Noise.’

132.       “R Nota, R. Barelds, & D van Maercke, 2005 HARMONOISE, WP3, , ‘Harmonoise WP 3 Engineering method for road

133.       traffic and railway noise after validation and fine-tuning.'”

134.       H.S Kim, J.S. Kim, H.J. Kang, B.K. Kim, S.R. Kim, 2005 Applied Acoustics, 66, 1102-1119, ‘Sound diffraction by multiple wedges and thin screens.’

135.       M.Buret & K.M. Li, & K. Attenborough, 2006 Journal of the Acoustical Society of America, 120(3), 1274-1283, ‘Diffraction of Sound due to moving sources by barriers and ground discontinuities.’

136.       M. Buret, K.M.Li, K. Attenborough, 2006 Applied Acoustics, 67, 135-156, ‘Optimisation of ground attenuation for moving sound sources.’

137.       U.P. Svensson & P.T. Calamia, 2006 ACTA ACUSTICA, 92, 501-512, ‘Edge-diffraction impulse responses near specular-zone and shadow-zone boundaries.’

138.       Y.W. Lam & M.R. Monazzam, 2006 Journal of the Acoustical Society of America, 120(2), 686-698, ‘On the modelling of sound propagation over muli-impedance discontinuities using a semiempirical diffraction formulation.’

139.       R. Lanoye, G. Vermeir & W. Lauriks, R Kruse & V. Mellert, 2006 Journal of the Acoustical Society of America, 119(5), 2826-2831, ‘Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor.’

140.       L. Liu & D.G. Albert, 2006 Journal of the Acoustical Society of America, 119(4), 2073-2083, ‘Acoustic pulse propagation near a right-angled wall.’

141.       A.T. Peplow, 2006 Journal of Sound and Vibration, 298, 982-1000, ‘On the efficiency of screens near roadside cuttings.’

142.       D. Duhamel, 2006 Journal of Sound and Vibration, 297, 432-443, ‘Shape optimization of noise barriers using genetic algorithms.’

143.       A.D Pierce, 1974 Journal of the Acoustical Society of America, 55(5), 947-955, ‘Diffraction of sound around corners and over wide barriers.’

144.       W.J Hadden & A.D. Pierce, 1981 Journal of the Acoustical Society of America, 69(5), 1266-1276, ‘Sound diffraction around screens and wedges for arbitary point source locations.’

145.       T.K. Stanton & D. Chu, 2007 Journal of the Acoustical Society of America, 122(6), 3167-3176, ‘Acoustics diffraction by deformed edges of finite length: Theory and experiment.’

146.       D.Chu & T.K. Stanton & A.D. Pierce, 2007 Journal of the Acoustical Society of America, 122(6), 3177-3194, ‘High-order acoustic diffraction by edges of finite thickness.’

147.       M.R. Monazzam, Y.W. Lam, 2008 Applied Acoustics, 69, 93-109, ‘Performance of T-shape barrier with top surface covered with absorptive quadratic residue diffusers’

148.       M. Dittrich, 2007 ACTA ACUSTICA, 93, 185-200, ‘The IMAGINE source model for railway noise prediction.’

149.       W.C. K. Alberts II, J.M. Noble, & M.A. Coleman, 2008 Journal of the Acoustical Society of America, 124(2), 733-742, ‘Sound propagation in the vicinity of an isolated building: An experimental investigation.’

150.       W.C. K. Alberts II, J.M. Noble, & M.A. Coleman, 2009 Applied Acoustics, 70, 1128-1130, ‘On the application of well-known diffraction models to the sound field in the shadow zone of an isolated building.’

151.       J. Cesbron, F. Anfosso-Lédée, D. Duhamel, H.P. Yin, D Le Houédec, 2009 Journal of Sound and Vibration, 320, 125-144, ‘Experimental study of tyre/road contact forces in rolling conditons for noise prediction.’

152.       C.Hopkins & Y.Lam, 2009 Applied Acoustics, 70, 300-308, ‘Sound fields near building facades – comparison of finite and semi-infinite reflectors on a rigid ground plane.’

153.       K. Hirosawa, K.Takashima, H. Nakagawa & W. Lauriks, 2009 Journal of the Acoustical Society of America, 126(6), 3020-3027, ‘Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field.’

154.       H. Min & X.Qui, 2009 Journal of the Acoustical Society of America, 126(1), 179-186, ‘Multiple acoustic diffraction around rigid parellel wide barriers.’

155.       E. Salomons, H. Polinder, W.J.A. Lohman,H. Zhou,H.C. Borst, & H.M.E. Miedema, 2009 Journal of the Acoustical Society of America, 126(5), 2340-2349, ‘Engineering modelling of traffic noise in shielded areas in cities.’

156.             Asheim & U.P. Svensson, 2010 Journal of the Acoustical Society of America, 128(4), 1590-1597, ‘Efficient evaluation of edge diffraction integrals using the numerical method of steepest descent.’

157.       P. Menounou & E.S. Papaefthymiou, 2010 Applied Acoustics, 71, 351-367, ‘Shadowing of directional noise sources by finite noise barriers.’

158.       S. Parakkal, K.E. Gilbert, X. Di, & H.E Bass, 2010 Journal of the Acoustical Society of America, 128(5), 2573-2580, ‘A generalized polar coordinate method for sound propagation over large-scale irregular terrain.’

159.       E. Salomons, H. Zhou, W.J.A. Lohman,, 2010 Journal of the Acoustical Society of America, 127(2), 796-803, ‘Efficient numerical modeling of traffc noise.’

160.       J.D. Smith, 2010 Journal of the Acoustical Society of America, 128(3), 973-988, ‘Diffraction from the edge of a thin elastic half plane and implications for panel measurements.’

161.       S. Laine, S. Siltanen, T. Lokki, L. Savioja, 2009 Applied Acoustics, 70, 172-181, ‘Accelerated beam tracing algorithm’

162.       D. Van Maercke, J. Defrance, 2007 ACTA ACUSTICA, 93, 201-212, ‘Development of an analytical model for outdoor sound propagation within the Harmonoise project.’

163.       W.J Hadden & A.D. Pierce, 1982 Journal of the Acoustical Society of America, 71(5), 1290, ‘Erratum: “Sound diffraction around screens and wedges for arbitary point source locations” [J. Acoust. Soc. Am 69, 1266-1276 (1981)]’

164.       M.C. Bérengier, B. Gauvreau, 2003 ACTA ACUSTICA, 89, 980-991, ‘Outdoor sound propagation: A short review on analytical and numerical approaches.’

165.       E. Walerian, R. Janczur, M. Czechowicz, 2002 ACTA ACUSTICA, 88, 65-76, ‘Practical description of diffraction at wedges applied to propagation model in a built up area.’

 

Olive Tree Lab Terrain™ features.

Noise barriers of finite size with special properties from a wedge barrier to an I-shape, G-shape or ?-shape barrier. 

Ray tracing and Ray detection engine with unlimited order of diffraction rays and reflections rays.

Ray tracing and Ray detection in a 3D environment, taking into consideration all modelled surfaces (as terrain, walls and noise barriers) irrespective of size and angle.

Reflection calculation based on the Fresnel zones approach, taking into consideration the finite size of a potential reflector.

Configuraiton module to take in account strongest sound ray contributions and removal of weaker ones, for remedial measures and noise barriers.

Calculates sound pressure level from a single source to a receiver(s) by coherent summation over all possible sound rays.

3D Sound Mapping, Import/Export DXF & Images.

Video tutorial

References Books

Allard, J.F. (2009). Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. West Sussex: Wiley & Sons.

Attenborough, K., Li, K.M. & Kirill, H. (2007). Predicting Outdoor Sound. New York: Taylor & Francis.

Crighton, D.G., Dowling, A.P., Williams J.E.F., Heckl, M., Leppington, F.G. (1992). Modern Methods in Analytical Acoustics: Lecture Notes. Heidelberg: Springer-Verlag.

Pierce, A.D. (1994). Acoustics: An Introduction to Its Physical Principles and Applications. New York: Acoustical Society of America.

Morse, P.M. (1995). Vibration and Sound. New York: Acoustical Society of America.

Schroeder, M.R. (1990). Number Theory in Science and Communication. Heidelberg: Springer-Verlag.

Vér, I.L., Beranek, L.L. (2006). Noise and Vibration Control Engineering. New Jersey: Wiley.