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In some situations when the road is deformed, the suspension system of vehicles may produce a specific sound, 
called rattle noise. It may be perceived by the driver and wrongly considered as a malfunction of the vehicle. 
This sound is part of the global acoustic comfort of the vehicle and hence is studied by RENAULT. 
The approach presented here aims at predicting the rattle noise subjective rating given by a RENAULT expert on 
a scale from 0 to 10, by developing a model based on in-car binaural microphones measurements in the ears if 
the driver.  
First, a set of 11 metrics has been built, related to temporal aspects, spectral components and time-frequency 
information of the rattle noise recorded. The corpus is made of 19 different configurations of suspension systems 
of a given car. 
The method used to select the most relevant metrics for the multiple regression model is presented. This 
selection is based on a statistical robustness estimation of the model. Hence, it appears that only 6 metrics are 
sufficient to build the model. 
Finally, the performance of the model is evaluated on 5 new configurations of suspension systems. 

1 Introduction 

In some situations when the road is deformed, the 
suspension system of cars is highly solicited and may 
produce a rattle noise. It may be perceived by the driver and 
wrongly considered as a malfunction of the vehicle. This 
sound is part of the global acoustic comfort of the vehicle 
and hence is studied by RENAULT. 
The present paper describes the method used to objectify 
this phenomenon: the aim is to link physical measurement 
(metrics) to a subjective evaluation of performance of the 
rattle noise. 
First, the problematic of objectivization of suspension rattle 
noise is exposed. Then, the metrics to characterize the 
phenomena, based on signal processing of binaural 
recordings, are exposed. Three types of metrics are 
proposed: spectral, temporal and time-frequency metrics. 
Next, the method used to build a multiple regression model 
between the metrics and the subjective ratings is presented. 
Lastly, the model is validated on a new set of suspension 
systems. 

2 Problematic of the objectivization 
of the rattle noise 

2.1 Description of the rattle noise 

The rattle noise occurs when the suspension system is 
highly solicited, for example when the road is deformed. It 
induces a tapping noise in the cab interior. This noise is 
generated by the suspension system: hydraulic chocks and 
the resulting vibrations are first attenuated by filtration of 
the suspension and then transmited to the body of the 
vehicle. The noise is propagated via the structure and 
diffused inside the car. 
Regarding frequency aspects, the rattle noise of suspension 
is localized in the [100 – 400] Hz frequency band. In time 
domain, the phenomenon happens with a succession of 
chocks resulting in a tapping noise. The figure 1 shows a 
time-frequency representation of pressure signal recorded 
inside the vehicle at the driver position. The signal has been 
first filtered with an A-weighting filter. This representation 

shows clearly the succession of chocks that are a 
characteristic of the rattle noise. 

 
Fig. 1 Time-frequency representation with MORLET 

wavelet of rattle noise 

2.2 Data set 

The data set for the suspension systems tested is composed 
of 25 elements build from different combinations and 
tunings of shock absorbers and filter elements. All the 
suspensions systems are tested on the same RENAULT car 
model. From this set, 19 suspension systems are selected to 
build the regression model and 6 suspensions systems are 
used to validate the estimation. 
The subjective rating of each of the 25 suspensions systems 
is given by a RENAULT expert on a scale from 0 to 10 
with a 0.5 step. At a rating of 3, the contribution is already 
considered very bad. At a rating of 9, the contribution is 
judged excellent. The rating is done by driving the car on 
tracks with different solicitations of the suspension system. 
Pressure recordings have been done at the ears of the 
drivers with a binaural headset BHS I from HEAD 
ACOUSTICS with a SQUADRIGA recorder. The 
recordings are made with the car placed on a test bench in 
order to control precisely speed and road profiles. Thus the 
same excitation is applied to the different suspension 
systems.  

2.3 Difficulties 

Considering the elements described previously, some 
difficulties have been identified. 



 

First, the subjective rating is given with a 0.5 step precision, 
thus the model has to reach an estimation error less than 
0.5. The estimation error is the difference between the 
subjective rating done by the RENAULT expert and the 
prediction given by the model. 
Secondly, the rattle noise is non stationary and composed of 
short time shocks. Their analysis, from a signal point of 
view, is non trivial. 
Lastly, for time computation limitations, the signal analysis 
is done on a short segment of time of the binaural 
recordings (around 20s). Some phenomena judged by the 
expert may not be present in the selected segment of the 
recordings. 

3 Characterization of rattle noise 
with signal processing metrics 

The metrics proposed here aims at characterizing the rattle 
noise, both on spectral, time and time-frequency domain. 
They are done on a short potion of signal (20s), filtered 
with a low-pass filter at 630 Hz from the binaural 
recordings. 

3.1 Spectral metrics 

In order to observe more precisely the frequency bands 
related to the rattle noise, a high resolution time-frequency 
analysis has been performed. The figure 2 shows the 
Reassigned Pseudo MARGENAU-HILL representation of a 
pressure signal of a rattle noise.  

 
Fig. 2 Reassigned Pseudo MARGENAU-HILL 

representation of the rattle noise 

This representation shows clearly that the phenomenon is 
localized in the frequency band [100 – 200] Hz, around 300 
Hz and around 400 Hz. 
Hence, the spectral metrics proposed are the following: 

• M1 : A-weighted level in the 3 Barks band 
covering 200 to 510 Hz 

• M2 : spectral center of gravity expressed for 
specific loudness estimation 

• M3 : Sum of specific loudness for the first 6 Bark 
bands (from 0 to 630 Hz) 

The specific loudness calculation is done with the ISO 532 
B model [1, 2, 3]. 
M1 focuses on the loudness of the rattle noise. M2 
represents the tonality of the noise in regard of the 

bass/medium/high content of the noise. M3 is a more global 
loudness measurement. 
 

3.2 Temporal metrics 

Regarding temporal metrics, we try to focus on the 
localization of the chocks corresponding to peaks in the 
temporal signal. The figure 3 represents the envelope of the 
pressure signal with a time integration of 20 ms. 

 
Fig. 3 Temporal envelop with 20 ms of time integration 

The temporal metrics proposed are the following: 
• M4 : A-weighted level of the most energetic 

chocks 
• M5 : inverse of the mean period of chocks 

occurrence 
• M6 : variance of chocks occurrence 
• M7 : skewness of chocks occurrence 
• M8 : kurtosis of chocks occurrence 

3.3 Time-frequency metrics 

Time-frequency metrics are intended to keep the time and 
frequency information together. We focus on the MORLET 
wavelet decomposition, as shown on figure 1. More 
precisely, we analyze the level distribution of the MORLET 
coefficients for the A-weighted signal of the rattle noise. 
The figure 4 shows a histogram of the level distribution of 
the coefficients corresponding to 3 suspension systems. 

 
Fig. 4 Distribution of the coefficients of MORLET wavelet 

decomposition 

The time-frequency metrics proposed are the following: 
• M9 : mean of the distribution 
• M10 : variance of the distribution 
• M11 : Kurtosis of the distribution 

 



 

4 Objectivization model 

4.1 Introduction to multiple linear 
regression 

p  is the number of metrics (predictors) and n  is the 
number of suspension system tested (observations). 
Observation vector y  is composed of n  subjective ratings 
of the expert for the different suspension systems. The 
matrix X is composed of the values of each metrics for 
each suspension system. The size of the matrix X  is 

pn× . We try to find the function that links y and X : 

 )(Xfy =  (1) 
In the multiple linear regression model we suppose 
that y and X are related with the following equation (2): 

 aXby +=  (2) 
In order to find the p coefficients of vector b  and the 
constant value a , a least square algorithm is used [4]. To 
reduce the influence of outlier observations which could 
perturb the regression, a weighted least square algorithm is 
used [5, 6]. 
The linear regression resolution is seldom exact. Hence the 
resulting vector ∗y  is an estimation of vector y  and called 
the estimate vector. It is close to y  in the least square 
sense: 

 aXby +=∗  (3) 

4.2 Quality estimation of the regression 

To determine the global quality and the precision of the 
regression obtained, some indicators are calculated. The 
first indicator is the correlation coefficient 2R  between ∗y  

and y . The more 2R  is high, the more ∗y and y  are 

subject to be close.  If  12 =R , ∗y  equals y  and the 
model is perfectly adjusted. 
The second indicator is the statistical root mean square 
error defined by: 
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The operator " . " stands for the norm of a vector, n the 
number of observations and p the number of explicative 
variables. This indicator measures the spreading of the error 
of the estimation. 
The third indicator used to quantify the predictability of the 
model is called goodness of prediction and noted 2Q . 2Q  
is a function of the Predicted residual sum of squares 
(Press) and defined as:  
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With ∗
− )( iy  the estimate obtained with (n-1) observations 

that exclude the thi  observation. This indicator measures 
the stability of the model when removing a single 
observation: if the quality of the estimation does not change 
when the model is rebuild with one observation removed, 
the predictability is very high. 
Hence a multiple linear regression model can be qualified 
by 3 indicators: 2R , σ  and 2Q . 

Finally, an interesting statistical indicator for each estimate 
value is the confidence interval (CI). The CI is used to 
indicate the reliability of the estimate value by providing an 
interval likely to include the estimate with a specified 
probability. We use the confidence interval at the 95% 
level, i.e. we have a 95% chance that the estimate is indeed 
inside the interval. For example, the rattle noise estimation 
for a suspension system can be estimated at 7.4 with 95% 
confidence interval [7.0; 7.8]. Lower and upper bounds for 
confidence intervals are computed from the sample estimate 
of the parameter and the assumed sampling distribution of 
the estimator. A large confidence interval corresponds to a 
poor estimation. With a quantization of 0.5 for the 
subjective rating, we would like to keep the confidence 
interval lower than [-0.5; 0.5], i.e. a width lower than 1.0. 

4.3 Selection of the best metrics 

If all 11 metrics are used, a model with a very good 
correlation coefficient ( %982 ≈R ) is obtained, but the 
goodness of prediction is very low %602 ≈Q  while the 
95% confidence interval is large (3 units). These results can 
be explained because of the high number of predictors (11 
metrics) regarding to the number of observation (19). It is 
more judicious to select the most pertinent metrics in order 
to increase the predictability and to decrease the confidence 
interval at 95%. 
To identify the best metrics, the following exhaustive 
method is used: 

1. Selection of all the possible combination of 
metrics : 1 from 11, 2 from 11, 3 from 11, etc… 

2. For each combination (one from 2^11-1), a 
multiple linear regression is computed 

3. Computation of 2R  and 2Q  

4. Selection of models with the highest 2Q  

5. Verification that 2R  is high (> 90%) 
 
Figure 5 shows the results for the correlation coefficient 
and goodness of prediction function of the number of 
explicative variables  



 

 
Fig. 5 Correlation coefficient and goodness of prediction 

function of the number of explicative variables 

Figure 5 shows that the correlation coefficient increases 
with the number of explicative variables while the goodness 
of prediction increases and then decreases. Thus the model 
offering the highest predictability is built by selecting 6 
explicative variables. The corresponding metrics are 
detailed in the Table 1. 

Spectral metrics M1 : A-weighted level in the 3 Barks 
band covering 200 to 510 Hz 
M2 : spectral center of gravity 
expressed for specific loudness 
estimation 
M3 : Sum of specific loudness for 
the first 6 Bark bands (from 0 to 630 
Hz) 

Temporal metrics M4 : A-weighted level of the most 
energetic chocks 
M8 : Kurtosis of chocks occurrence 

Time-frequency 
metrics 

M9 : mean of the distribution 
 

Table 1 : Selected metrics 

In order to validate the choice of the metrics, we first verify 
that the selection of best metrics is coherent when 
increasing the number of explicative variables. It is 
preferable to observe that the previous chosen metrics are 
kept when increasing the number of metrics. Figure 6 
shows the evolution of selected variables for the models 
offering the highest predictability with the number of 
explicative variables. We observe that, except for 2 selected 
variables, the progression is stable and for each step, the 
previous chosen metrics are kept. 
Finally, we verify that the correlation between each of 6 
metrics is held low. The highest correlation is found 
between M1 and M3 at 75%. The correlations between 
other metrics are lower than 60%. 
 

 
Fig. 6 validation of choice of metrics 

5 Analysis of the linear model 

5.1 Results 

A multiple linear regression model has been applied 
between an observation vector containing the 19 ratings of 
rattle noise of suspension system from RENAULT and 6 
explicative variables previously selected. The performance 
indicators of the model are summarized in the table 2. 

Statistical indicator Value 
Correlation coefficient 2R  94% 

Goodness of prediction 2Q  87% 
Statistical root mean square error σ  0.39 
Mean width of confidence interval at 95% 1.01 

Table 2 : Statistical indicators of the model 

The statistical indicators are in concordance with the 
objectives fixed: correlation coefficient and goodness of 
prediction are high and the spread of the error is in the 
range [-0.5; 0.5]. 
Figure 7 represents the model estimation versus the 
subjective rating. If the model was perfect, the dots should 
be on the diagonal of the plots. We observe the good 
performance of the model. Only 3 suspensions system (V1, 
V13 and V18) are slightly outside the +/-0.5 range from the 
subjective rating. 
 



 

 
Fig. 7 Model estimation vs. Subjective rating 

5.2 Validation on 6 new suspension 
systems 

In order to validate the model, the prediction is computed 
for 6 new suspensions systems which do not belong to the 
ones used to build the model. The validation on the new 
corpus shows good results. The statistical indicators show 
95% for the correlation coefficient and 0.45 for the root 
mean square error, while the mean width of confidence 
interval at 95% is 1.17. Figure 8 shows the estimation 
versus the subjective rating. The estimation error versus the 
subjective rating is below 0.5 except for V24 where the 
error is 0.7. Hence, it can be observed that the model 
achieves quite good results. 

 
Fig. 8 Model estimation vs. Subjective rating for 6 new 

suspension systems 

5.3 Further understanding of the rattle 
noise 

In order to further understand the rattle noise, a principal 
component analysis for the 6 metrics used by the model has 
been performed. This kind of analysis allows better 
understanding of the rattle noise perception. This analysis is 
out of scope of this paper but is mentioned to offer an 
exhaustive analysis method. 
Finally a tool has been developed in order to provide direct 
analysis and estimation of the rattle noise from a recorded 
signal. This tool allows RENAULT experts to analyze 
sounds and experiment with the model. 

5 Conclusion 

The rattle noise of suspension systems is impacting the 
acoustic comfort of car vehicles. The work presented here 
shows a method deployed in order to build an 
objectivization of this phenomenon. This approach is 
divided in four parts: 

1. Construction of signal processing metrics form 
binaural recorded signals 

2. Selection of the best metrics to describe the 
phenomenon with the help of statistical indicators 

3. Computation of multiple linear regression model 
from the selected metrics 

4. Validation of the model on a new set of rattle 
noise recording from different suspension systems 

For each step, a particular care has been provided to use 
advanced techniques. The metrics use together spectral, 
time and time-frequency analysis. The selection of the best 
metrics is based on statistical indicators. This study leaded 
to an accurate model given the data provided (19 rattle 
noises from 19 suspension systems for the same car). 
Nevertheless, rattle noise objectivization needs still further 
investigations. Particularly, the model has to be tested and 
extended for different cars. 
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